Science Pacing Guide Chemistry

Time Frame: September – January Unit 1: Structure and Properties of Matter

Science & Engineering Practices	Crosscutting Concepts	Literacy Standards	Mathematics Standards
Developing and Using Models	Patterns	RST.9-10.7 Translate quantitative or	MP.4 Model with mathematics. (HS-
Modeling in 9–12 builds on K–8 and	Different patterns may be observed at	technical information expressed in	PS1-8)
progresses to using, synthesizing, and	each of the scales at which a system is	words in a text into visual form (e.g., a	
developing models to predict and	studied and can provide evidence for	table or chart) and translate	HSN-Q.A.1 Use units as a way to
show relationships among variables	causality in explanations of	information expressed visually or	understand problems and to guide the
between systems and their	phenomena. (HS-PS1-1), (HS-PS1-3)	mathematically (e.g., in an equation)	solution of multi-step problems;
components in the natural and		into words. (HS-PS1-1)	choose and interpret units consistently
designed worlds.	Energy and Matter		in formulas; choose and interpret the
Develop a model based on	In nuclear processes, atoms are not	RST.11-12.1 Cite specific textual	scale and the origin in graphs and data
evidence to illustrate the	conserved, but the total number of	evidence to support analysis of science	displays. (HS-PS1-3), (HS-PS1-8),
relationships between systems or	protons plus neutrons is conserved.	and technical texts, attending to	(HS-PS2-6)
between components of a system.	(HS-PS1-8)	important distinctions the author	
(HS-PS1-8)		makes and to any gaps or	HSN-Q.A.2 Define appropriate
Use a model to predict the	Structure and Function	inconsistencies in the account. (HS-	quantities for the purpose of
relationships between systems or	Investigating or designing new	PS1-3), (HS-PS2-6)	descriptive modeling. (HS-PS1-8),
between components of a system.	systems or structures requires a		(HS-PS2-6)
(HS-PS1-1)	detailed examination of the properties	WHST.9-12.2 Write	
	of different materials, the structures of	informative/explanatory texts,	HSN-Q.A.3 Choose a level of
Planning and Carrying Out	different components, and connections	including the narration of historical	accuracy appropriate to limitations on
Investigations	of components to reveal its function	events, scientific procedures/	measurement when reporting
Planning and carrying out	and/or solve a problem. (HS-PS2-	experiments, or technical processes.	quantities. (HS-PS1-3), (HS-PS1-8),
investigations in 9-12 builds on K-8	6)	(HS-PS2-6)	(HS-PS2-6)
experiences and progresses to include			
investigations that provide evidence		WHST.9-12.7 Conduct short as well	
for and test conceptual, mathematical,		as more sustained research projects to	
physical, and empirical models.		answer a question (including a self-	
Plan and conduct an investigation		generated question) or solve a	
individually and collaboratively to		problem; narrow or broaden the	
produce data to serve as the basis		inquiry when appropriate; synthesize	
for evidence, and in the design:		multiple sources on the subject,	
decide on types, how much, and		demonstrating understanding of the	
accuracy of data needed to		subject under investigation. (HS-PS1-	
produce reliable measurements		3)	
and consider limitations on the			

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Science & Engineering Practices	Crosscutting Concepts	Literacy Standards	Mathematics Standards
precision of the data (e.g., number		WHST.11-12.8 Gather relevant	
of trials, cost, risk, time), and		information from multiple	
refine the design accordingly.		authoritative print and digital sources,	
(HS-PS1-3)		using advanced searches effectively;	
		assess the strengths and limitations of	
Obtaining, Evaluating, and		each source in terms of the specific	
Communicating Information		task, purpose, and audience; integrate	
Obtaining, evaluating, and		information into the text selectively to	
communicating information in 9–12		maintain the flow of ideas, avoiding	
builds on K–8 and progresses to		plagiarism and overreliance on any	
evaluating the validity and reliability		one source following a standard	
of the claims, methods, and designs.		format for citation. (HS-PS1-3)	
Communicate scientific and			
technical information (e.g. about		WHST.9-12.9 Draw evidence from	
the process of development and		informational texts to support analysis,	
the design and performance of a		reflection, and research. (HS-PS1-3)	
proposed process or system) in			
multiple formats (including orally,			
graphically, textually, and			
mathematically). (HS-PS2-6)			

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
Students who demonstrate	PS1.A: Structure and		Before:	Absorbance	
understanding can:	Properties of Matter		KWL – Students will	spectrum	http://periodic.lanl.gov/index.sht
	Each atom has a charged	How can one	list what they know	Actual mass	ml Interactive periodic table –
HS-PS1-1 Use the periodic table	substructure consisting of a	explain the	and what they want	Atomic bonding	good for learning about elements
as a model to predict the relative	nucleus, which is made of	structure,	to know about atoms.	principles	
properties of elements based on	protons and neutrons,	properties, and	This will be repeated	Atomic mass	http://www.chem4kids.com/map.
the patterns of electrons in the	surrounded by electrons.	interactions of	with each concept	Atomic motion	html - has many chemistry topics
outermost energy level of	(HS-PS1-1)	matter?	throughout the unit.	Atomic nucleus	including matter, atoms, periodic
atoms. [Clarification Statement:			(periodic table,	Atomic number	table, elements, reactions, and
Examples of properties that	The periodic table orders	What is the	fusion, decay, etc)	Atomic theory	biochemistry. Has simple
could be predicted from patterns	elements horizontally by	most useful		Atomic weight	explanations and interactive
could include reactivity of	the number of protons in	type of	Quick Writes –	Avogadro's	activities.
metals, types of bonds formed,	the atom's nucleus and	information	Before each lesson	hypothesis	
numbers of bonds formed, and	places those with similar	obtained by the	students will be asked	Avogadro's	

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
reactions with oxygen.]	chemical properties in	organization of	to write their	number	http://misterguch.brinkster.net/ch
[Assessment Boundary:	columns. The repeating	the periodic	thoughts and	Binary	emfiestanew.html - a Chemistry
Assessment is limited to main	patterns of this table reflect	table?	questions for the day	Binary	teacher's website with links to
group elements. Assessment does	patterns of outer electron		pertaining to the	compound	many activities and labs. Useful
not include quantitative	states. (HS-PS1-1)		objectives.	Bond energy	for ideas.
understanding of ionization				Bright line	Periodic Table:
energy beyond relative trends.]	The structure and		Pretest – Students	spectrum	http://www.chem4kids.com/files/
	interactions of matter at the		will be given an	Carbon atom	elem intro.html - describes the
HS-PS1-3 Plan and conduct an	bulk scale are determined		assessment to	Carbon atom	periodic table, groups and
investigation to gather	by electrical forces within		understand their	Carbon dioxide	families, characteristics, and
evidence to compare the	and between atoms. (HS-		knowledge on the	Charged object	offers interactive quizzes at the
structure of substances at the	PS1-3),(secondary to HS-		unit before	Chemical bond	end of each section.
bulk scale to infer the strength of	PS2-6)		instruction is given.	Chemical	
electrical forces between				properties of	http://education.jlab.org/elementfl
particles. [Clarification	PS1.C: Nuclear Processes			elements	<u>ashcards/index.html</u> - interactive
Statement: Emphasis is on	Nuclear processes,	How is energy	<u>During</u> :	Covalent bond	site with flashcards on learning
understanding the strengths of	including fusion, fission,	related to	Think/Pair/Share –	Crystalline solid	the elements – can be easy to very
forces between particles, not on	and radioactive decays of	fusion, fission	Students will work in	Decay rate	challenging.
naming specific intermolecular	unstable nuclei, involve	and radioactive	pairs to practice and	Double bond	http://environmentalchemistry.co
forces (such as dipole-dipole).	release or absorption of	decay?	reinforce rules as	Earth's elements	m/yogi/periodic/crystal.html -
Examples of particles could	energy. The total number of		they are introduced.	Electric force	interactive periodic table sorted
include ions, atoms, molecules,	neutrons plus protons does			Electrical	by crystal structure
and networked materials (such as	not change in any nuclear		Conferences – Check	conductivity	
graphite). Examples of bulk	process. (HS-PS1-8)		for understanding by	Electrically	http://periodic.lanl.gov/default.ht
properties of substances could			meeting with students	neutral	<u>m</u> - basic interactive periodic
include the melting point and	PS2.B: Types of		during work time.	Electromagnetic	table – includes history,
boiling point, vapor pressure,	Interactions Attraction and	How do the		field	properties, uses of the elements
and surface tension.]	repulsion between electric	properties of	Lab Investigations –	Electromagnetic	http://www.ptable.com/ - very
[Assessment Boundary:	charges at the atomic scale	the atomic	Students will be	radiation	informative interactive periodic
Assessment does not include	explain the structure,	particles affect	responsible for	Electromagnetic	table – includes groupings,
Raoult's law calculations of	properties, and	the interactions	developing and	spectra	properties, orbitals, and isotopes.
vapor pressure.]	transformations of matter,	of those atoms?	implementing one or	Electromagnetic	http://www.webelements.com/ -
77G 77G1 0 75 1 1 1 1	as well as the contact forces		more lab	wave	
HS-PS1-8 Develop models to	between		investigation(s)	Electron	very detailed interactive periodic table – has 19 different tabs -such
illustrate the changes in the			exploring the	Electron cloud	
composition of the nucleus of the			periodic table,	Electron	as history, uses, biology, orbital
atom and the energy release			nuclear processes,	configuration	properties – for each element
during the processes of fission,		.1 1 5 .1	and properties of	Electron sharing	

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
fusion, and radioactive		Questions	elements.	Electron transfer	Energy Levels:
decay. [Clarification Statement:			Cicinones.	Electro-	http://www.colorado.edu/physics/
Emphasis is on simple				negativity	2000/quantumzone/bohr2.html -
qualitative models, such as			After:	Element family	simple site explaining energy
pictures or diagrams, and on the			Posttest: Students	Elementary	levels from a physics point of
scale of energy released in			will be given a test	particle	view.
nuclear processes relative to			after the unit has	Elements of	
other kinds of transformations.]			been completed and	matter	http://education.jlab.org/qa/electr
[Assessment Boundary:			the Presentations	Emission	on_config.html - explains
Assessment does not include			have been given.	spectra	electron configuration tables
quantitative calculation of			nave been given.	Empirical	http://education.jlab.org/qa/electr
energy released. Assessment is			Project: Students	formula	on_number.html - explains
limited to alpha, beta, and			will create a	Endothermic	energy levels
gamma radioactive decays.]			presentation using	process	energy revers
gamma radiodelive decays.			multi-media (as a	Energy level	http://www.csun.edu/science/che
HS-PS2-6 Communicate			group) of this unit.	Energy	mistry/ - Internet resources to
scientific and technical			This will include	sublevels	accompany the Source Book for
information about why the			various concepts,	Enthalpy	teaching Science. Has links to
molecular-level structure is			experimental data,	Excited state	various topics.
important in the functioning of			vocabulary, and	Exothermic	- Sales as press.
designed materials.			applications in the	process	http://www.colorado.edu/physics/
[Clarification Statement:			"real world" and will	Fossil fuel	2000/quantumzone/bohr2.html
Emphasis is on the attractive and			focus on predictions	Ground state	Applet shows the Bohr model
repulsive forces that determine			of an imaginary	Hydrocarbons	along with a diagram showing the
the functioning of the material.			element. Assessed	Intermolecular	energy level.
Examples could include why			by teacher created	force	
electrically conductive materials			rubric.	Ion	El4 C64
are often made of metal, flexible				Ionic bond	Electron Configuration:
but durable materials are made				Ionization	http://education.jlab.org/qa/electr
up of long chained molecules,				energy	on config.html How to read an
and pharmaceuticals are				Isomers	electron configuration table
designed to interact with specific				Isotope	http://education.jlab.org/qa/electr
receptors.] [Assessment				Kernel	on_number.html How many
Boundary: Assessment is limited				Lewis structures	electrons fit in each shell?
to provided molecular structures				Main energy	http://www.lon-
of specific designed materials.]				level	capa.org/%7Emmp/period/electro
				Main group	n.htm Use this applet to explore
HS-ETS1-2 Design a solution to				elements	minum Ose uns appiet to explore

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.				Metallic bond Metalloids Mole Molecular formula Monomer Moving electric charge Neutron mass to energy conversion Nuclear reaction Orbital shape Orbitals Organic matter Outer electron Periodic table of the elements Polarity Potential energy Probability Protein Proton Quantum energy Quantum numbers Radioactive dating Radioactive decay Radioactive decay Radioactive isotope Relative mass Release of energy Single bond Stable Strong force	in which order the atomic shells are filled with electrons http://library.thinkquest.org/1042 9/low/eleconfig/electron.htm Electron configuration, periodicity, atomic radius, ionization energy, electron affinity http://www.shodor.org/unchem/b asic/nomen/index.html Review some of the rules and conventions of naming compounds http://www.visionlearning.com/library/module_viewer.php?mid=5 3 History and use of moles (Avogadro, Molar Mass, Atomic Weight, Molecular Weight, Mole/Weight relationships) http://www.matter.org.uk/Schools/Content/Reactions/BondEnergy.html Bond energy interactive site http://www.ptable.com/#Writeup/Wikipedia Interactive periodic table - includes properties, orbitals, isotopes http://education.jlab.org/elementflashcards/index.html Element Flash Cards - practice http://antoine.frostburg.edu/chem/senese/101/atoms/slides/sld001.htmlslides and notes on atomic

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
				Sublevel Synthetic polymer Thermal conductivity Transforming matter and/or energy Valence electrons Wave amplitude Wavelength Weight of subatomic particles	http://education.jlab.org/elementh angman/index.html Element Hangman http://www.pbslearningmedia.org /resource/phy03.sci.phys.matter.p table/periodic-table-of-the- elements/ Interactive periodic table – games for predicting where elements belong http://www.ptable.com/#Writeup/ Wikipedia Interactive periodic table - includes properties, orbitals, isotopes http://education.jlab.org/elementfl ashcards/index.html Element Flash Cards - practice http://antoine.frostburg.edu/chem/ senese/101/atoms/slides/sld001.ht m Slides and notes on atomic theory http://education.jlab.org/elementh angman/index.html Element Hangman http://www.pbslearningmedia.org /resource/phy03.sci.phys.matter.p table/periodic-table-of-the- elements/ Interactive periodic table – games for predicting where elements belong

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
					http://www.chemguide.co.uk/atoms/structures/molecular.html - This page describes how the physical properties of substances having molecular structures varies with the type of intermolecular attractions - hydrogen bonding or van der Waals forces.

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Science Pacing Guide Chemistry

Time Frame: January – April Unit 2: Chemical Reactions

Science & Engineering Practices	Crosscutting Concepts	Literacy Standards	Mathematics Standards
Developing and Using Models	Patterns		MP.2 Reason abstractly and
Modeling in 9–12 builds on K–8 and	Different patterns may be observed at	RST.11-12.1 Cite specific textual	quantitatively. (HS-PS1-5), (HS-PS1-
progresses to using, synthesizing, and	each of the scales at which a system is	evidence to support analysis of science	7)
developing models to predict and	studied and can provide evidence for	and technical texts, attending to	
show relationships among variables	causality in explanations of	important distinctions the author	MP.4 Model with mathematics. (HS-
between systems and their	phenomena.	makes and to any gaps or	PS1-4)
components in the natural and	(HS-PS1-2), (HS-PS1-5)	inconsistencies in the account. (HS-	
designed worlds.		PS1-5)	HSN-Q.A.1 Use units as a way to
 Develop a model based on 	Energy and Matter		understand problems and to guide the
evidence to illustrate the	The total amount of energy and matter	WHST.9-12.2 Write	solution of multi-step problems;
relationships between systems or	in closed systems is conserved. (HS-	informative/explanatory texts,	choose and interpret units consistently
between components of a system.	PS1-7)	including the narration of historical	in formulas; choose and interpret the
(HS-PS1-4)		events, scientific procedures/	scale and the origin in graphs and data
	Changes of energy and matter in a	experiments, or technical processes.	displays. (HS-PS1-2), (HS-PS1-4),
Using Mathematics and	system can be described in terms of	(HS-PS1-2),(HS-PS1-5)	(HS-PS1-5), (HS-PS1-7)
Computational Thinking	energy and matter flows into, out of,		
Mathematical and computational	and within that system. (HS-PS1-4)	WHST.9-12.5 Develop and strengthen	HSN-Q.A.2 Define appropriate
thinking at the 9–12 level builds on		writing as needed by planning,	quantities for the purpose of
K–8 and progresses to using algebraic	Stability and Change	revising, editing, rewriting, or trying a	descriptive modeling. (HS-PS1-4),
thinking and analysis, a range of linear	Much of science deals with	new approach, focusing on addressing	(HS-PS1-7)
and nonlinear functions including	constructing explanations of how	what is most significant for a specific	
trigonometric functions, exponentials	things change and how they remain	purpose and audience. (HS-PS1-2)	HSN-Q.A.3 Choose a level of
and logarithms, and computational	stable. (HS-PS1-6)		accuracy appropriate to limitations on
tools for statistical analysis to analyze,		WHST.9-12.7 Conduct short as well	measurement when reporting
represent, and model data. Simple	Connections to Nature of Science	as more sustained research projects to	quantities. (HS-PS1-2), (HS-PS1-4),
computational simulations are created	Scientific Knowledge Assumes an	answer a question (including a self-	(HS-PS1-5), (HS-PS1-7)
and used based on mathematical	Order and Consistency in Natural	generated question) or solve a	
models of basic assumptions.	Systems	problem; narrow or broaden the	
• Use mathematical representations		inquiry when appropriate; synthesize	
of phenomena to support claims.	Science assumes the universe is a vast	multiple sources on the subject,	
(HS-PS1-7)	single system in which basic laws are	demonstrating understanding of the	
	consistent. (HS-PS1-7)	subject under investigation. (HS-PS1-	
Constructing Explanations and		6)	
Designing Solutions			

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories. • Apply scientific principles and evidence to provide an explanation of phenomena and solve design problems, taking into account possible unanticipated effects. (HS-PS1-5) • Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-PS1-2) • Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-PS1-6)
Considerations. (HS-1S1-0)

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
Students who demonstrate	PS1.A: Structure and	Questions	Before:	Acid rain	http://www.chemtutor.com/react.ht
understanding can:	Properties of Matter		KWL – Students will	Acid/base reaction	m - website that offers
and the same and the same	The periodic table	How can one	list what they know	Acidic	explanations of reactions,
HS-PS1-2 Construct and revise	orders elements	explain the	and what they want to	Alkaline	including equations, balancing, and
an explanation for the outcome of	horizontally by the	structure,	know about atoms.	Atomic weight	types of reactions
a simple chemical reaction based	number of protons in	properties, and	This will be repeated	Basic	31
on the outermost electron states	the atom's nucleus and	interactions of	with each concept	Boiling point	Balancing Equations:
of atoms, trends in the periodic	places those with	matter?	throughout the unit.	Bronsted-lowry	http://funbasedlearning.com/chemi
table, and knowledge of the	similar chemical		(periodic table, fusion,	Carboxyl group	stry/chemBalancer/default.htm -
patterns of chemical	properties in columns.	How can one	decay, etc)	Chemical bond	interactive site for practicing
properties. [Clarification	The repeating patterns	explain and		Delta (meaning	balancing equations
Statement: Examples of chemical	of this table reflect	predict	Quick Writes – Before	change)	http://education.jlab.org/elementba
reactions could include the	patterns of outer	interactions	each lesson students	Dipole-dipole	lancing/index.html - interactive site
reaction of sodium and chlorine,	electron states. (HS-	between	will be asked to write	bond	for practicing balancing equations
of carbon and oxygen, or of	PS1-2) (Note: This	objects and	their thoughts and	Dispersion forces	
carbon and hydrogen.]	Disciplinary Core Idea	within systems	questions for the day	Endothermic	http://www.wfu.edu/%7Eylwong/b
[Assessment Boundary:	is also addressed by	of objects?	pertaining to the	process	alanceeq/balanceq.html - tutorial
Assessment is limited to chemical	HS-PS1-1.)		objectives.	Endothermic	on how to balance equations
reactions involving main group				reaction	
elements and combustion	A stable molecule has		Pretest – Students will	Exothermic	http://www.csun.edu/science/chem
reactions.]	less energy than the		be given an assessment	process	<u>istry/</u> - Internet resources to
	same set of atoms		to understand their	Exothermic	accompany the Source Book for
HS-PS1-4 Develop a model to	separated; one must		knowledge on the unit	reaction	teaching Science. Has links to
illustrate that the release or	provide at least this		before instruction is	Hydrogen bonding	various topics.
absorption of energy from a	energy in order to take		given.	Hydrogen ion	
chemical reaction system	the molecule apart.			Hydronium ion	Molecular and Empirical
depends upon the changes in total	(HS-PS1-4)			Hydroxide	Formulas:
bond energy. [Clarification			During:	Ion	http://www.infoplease.com/ce6/sci/
Statement: Emphasis is on the	PS1.B: Chemical	**	Think/Pair/Share –	Ionic solid	A0858195.html Explanation of
idea that a chemical reaction is a	Reactions Chemical	How can you	Students will work in	(crystal)	molecular and empirical formulas
system that affects the energy	processes, their rates,	determine if a	pairs to practice and	Kw	http://science.jrank.org/pages/4403
change. Examples of models	and whether or not	chemical	reinforce rules as they	Limiting reagent	/Molecular-Formula.html
could include molecular-level	energy is stored or	reaction will	are introduced.	Melting point	Explanation on writing molecular
drawings and diagrams of	released can be	occur?	T 1 T	Metal	formulas
reactions, graphs showing the	understood in terms of		Lab Investigations –	Molar volume	
relative energies of reactants and	the collisions of		Students will be	Network solid	http://www.visionlearning.com/libr
products, and representations	molecules and the		responsible for	Neutral	ary/module_viewer.php?mid=53
showing energy is conserved.]	rearrangements of		developing and	Neutralize	

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
Standards [Assessment Boundary:	atoms into new	Questions	implementing one or	Oxidation	History and use of moles
Assessment does not include	molecules, with		more lab	Ph	(Avogadro, Molar Mass, Atomic
calculating the total bond energy	consequent changes in	How can you	investigation(s)	Pressure	Weight, Molecular Weight,
changes during a chemical	the sum of all bond	prove that	exploring the periodic	Product	Mole/Weight relationships)
reaction from the bond energies	energies in the set of	mass is	table, nuclear	Properties of	Wole/ Weight relationships)
of reactants and products.]	molecules that are	conserved	processes, and	reactants	https://www.youtube.com/watch?v
of reactants and products.	matched by changes in	during a	properties of elements.	Reactant	=kjKyEdrVXJA Video on
HS-PS1-5 Apply scientific	kinetic energy. (HS-	chemical	properties of elements.	Reagent	concentration and reaction rates –
principles and evidence to	PS1-4),(HS-PS1-5)	reaction?	Daily Assignments –	Reduction	good as a demo or to show to
provide an explanation about the	F51-4),(H5-F51-3)	reaction?	Students will be given	reactions	students
effects of changing the	In many situations, a		assignments that will	Relative mass	students
temperature or concentration of	dynamic and		check for	Release of energy	http://wps.prenhall.com/wps/media
the reacting particles on the rate	condition-dependent		understanding.	Temporary dipole	/objects/169/173125/MolecularEnt
at which a reaction	balance between a		understanding.	Temporary dipole	ropy.html - prentice hall media
occurs. [Clarification Statement:	reaction and the		Drawings – Students		sites – this one is shows entropy –
Emphasis is on student reasoning	reverse reaction		will be responsible for		many others available
that focuses on the number and	determines the		molecular drawing to		many others available
energy of collisions between	numbers of all types of		show understanding.		http://www.matter.org.uk/Schools/
molecules.] [Assessment	molecules present.		show understanding.		Content/Reactions/BondEnergy.ht
Boundary: Assessment is limited	(HS-PS1-6)				ml Bond energy interactive site
to simple reactions in which there	(113-1 31-0)		After:		mi Bond energy interactive site
are only two reactants; evidence	The fact that atoms are		Posttest: Students will		http://www.avogadro.co.uk/definiti
from temperature, concentration,	conserved, together		be given a test after the		ons/hbond.htm - Basic definition
and rate data; and qualitative	with knowledge of the		unit has been		along with a table illustrating the
relationships between rate and	chemical properties of		completed and the		relationship between bond length
temperature.]	the elements involved,		Presentations have		and bond enthalpy.
temperature.	can be used to describe		been given.		and bond enthalpy.
HS-PS1-6 Refine the design of a	and predict chemical		been given.		http://id.mind.net/%7Ezona/mstm/
chemical system by specifying a	reactions. (HS-PS1-		Project: Students will		physics/mechanics/energy/heatAnd
change in conditions that would	2),(HS-PS1-7)		create a presentation		Temperature/changesOfPhase/chan
produce increased amounts of			using multi-media (as a		geOfState.html - This page covers
products at	ETS1.C: Optimizing		group) of this unit.		some introductions about heat and
equilibrium.* [Clarification	the Design Solution		This will include		temperature. At the end of this
Statement: Emphasis is on the	Criteria may need to be		various concepts,		page, are some links to further
application of Le Chatelier's	broken down into		experimental data,		material:
Principle and on refining designs	simpler ones that can		vocabulary, chemical		
of chemical reaction systems,	be approached		equations and		Ideal Gas Law:
including descriptions of the	systematically and		applications in the		

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
connection between changes	decisions about the		"real world" and will		http://www.chemicool.com/idealga
made at the macroscopic level	priority of certain		focus on predictions of		s.html - Interactive site for
and what happens at the	criteria over others		reactions between real		calculating gas law problems.
molecular level. Examples of	(trade-offs) may be		and imaginary		
designs could include different	needed. (secondary to		elements, compounds,		http://hyperphysics.phy-
ways to increase product	HS-PS1-6)		and mixtures.		astr.gsu.edu/hbase/kinetic/idegas.ht
formation including adding			Assessed by teacher		ml - Explains the ideal gas law.
reactants or removing products.]			created rubric.		Has links for necessary
[Assessment Boundary:					vocabulary.
Assessment is limited to					·
specifying the change in only one					http://www.chem.ufl.edu/~itl/2045/
variable at a time. Assessment					MH_sims/gas_sim.html - Ideal Gas
does not include calculating					Law simulation
equilibrium constants and					
concentrations.]					http://www.funtrivia.com/playquiz/
					<u>quiz2287571a312e0.html</u> - Ideal
HS-PS1-7 Use mathematical					Gas Law trivia quiz
representations to support the					•
claim that atoms, and therefore					
mass, are conserved during a					
chemical reaction. [Clarification					
Statement: Emphasis is on using					
mathematical ideas to					
communicate the proportional					
relationships between masses of					
atoms in the reactants and the					
products, and the translation of					
these relationships to the					
macroscopic scale using the mole					
as the conversion from the atomic					
to the macroscopic scale.					
Emphasis is on assessing					
students' use of mathematical					
thinking and not on memorization					
and rote application of problem-					
solving techniques.] [Assessment					
Boundary: Assessment does not					
include complex chemical					

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
reactions.]					
HS-ETS1-1 Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.					
HS-ETS1-3 Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.					

Science Pacing Guide Chemistry

Time Frame: April – June

Unit 3: Energy

Science & Engineering Practices	Crosscutting Concepts	Literacy Standards	Mathematics Standards
Developing and Using Models	Cause and Effect	RST.11-12.1 Cite specific textual	MP.2 Reason abstractly and
Modeling in 9–12 builds on K–8 and	Cause and effect relationships can be	evidence to support analysis of science	quantitatively. (HS-PS3-1), (HS-PS3-
progresses to using, synthesizing, and	suggested and predicted for complex	and technical texts, attending to	2), (HS-PS3-3), (HS-PS3-4), (HS-
dev eloping models to predict and	natural and human designed systems	important distinctions the author	PS3-5)
show relationships among variables	by examining what is known about	makes and to any gaps or	
between systems and their	smaller scale mechanisms within the	inconsistencies in the account. (HS-	MP.4 Model with mathematics. (HS-
components in the natural and	system. (HS-PS3-5)	PS3-4)	PS3-1), (HS-PS3-2), (HS-PS3-3),
designed worlds.			(HS-PS3-4), (HS-PS3-5)
Develop and use a model based on	Systems and System Models	WHST.9-12.7 Conduct short as well	
evidence to illustrate the	When investigating or describing a	as more sustained research projects to	HSN-Q.A.1 Use units as a way to
relationships between systems or	system, the boundaries and initial	answer a question (including a self-	understand problems and to guide the
between components of a system.	conditions of the system need to be	generated question) or solve a	solution of multi-step problems;
(HS-PS3-2), (HSPS3-5)	defined and their inputs and outputs	problem; narrow or broaden the	choose and interpret units consistently
	analyzed and described using models.	inquiry when appropriate; synthesize	in formulas; choose and interpret the
Planning and Carrying Out	(HS-PS3-4)	multiple sources on the subject,	scale and the origin in graphs and data
Investigations	N. I.I. I. I. P. J.	demonstrating understanding of the	displays. (HS-PS3-1), (HS-PS3-3)
Planning and carrying out	Models can be used to predict the	subject under investigation. (HS-PS3-	HON O A A D C
investigations to answer questions or	behavior of a system, but these	3), (HS-PS3-4), (HS-PS3-5)	HSN-Q.A.2 Define appropriate
test solutions to problems in 9–12	predictions have limited	WIIOT 11 12 0 C 1 1	quantities for the purpose of
builds on K–8 experiences and	precision and reliability due to the	WHST.11-12.8 Gather relevant	descriptive modeling. (HS-PS3-1),
progresses to include investigations	assumptions and approximations	information from multiple	(HS-PS3-3)
that provide evidence for and test	inherent in models (HS-PS3-1)	authoritative print and digital sources,	HCN O A 2 Change a level of
conceptual, mathematical, physical,	Enguer and Matter	using advanced searches effectively;	HSN-Q.A.3 Choose a level of
and empirical models.Plan and conduct an investigation	Energy and Matter Changes of energy and matter in a	assess the strengths and limitations of each source in terms of the specific	accuracy appropriate to limitations on measurement when reporting
individually and collaboratively to	system can be described in terms of	task, purpose, and audience; integrate	quantities. (HS-PS3-1),(HS-PS3-3)
produce data to serve as the basis	energy and matter flows into, out of,	information into the text selectively to	quantities. (115-155-1),(115-155-5)
for evidence, and in the design:	and within that system. (HS-PS3-3)	maintain the flow of ideas, avoiding	
decide on types, how much, and	and within that system. (115-1 55-5)	plagiarism and overreliance on any	
accuracy of data needed to	Energy cannot be created or	one source and following a standard	
produce reliable measurements	destroyed—only moves between one	format for citation. (HS-PS3-4),(HS-	
and consider limitations on the	place and another place, between	PS3-5)	
precision of the data (e.g., number	objects and/or fields, or between	155 5)	
of trials, cost, risk, time), and	systems. (HS-PS3-2)		

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Science & Engineering Practices	Crosscutting Concepts	Literacy Standards	Mathematics Standards
refine the design accordingly. (HS-PS3-4)		WHST.9-12.9 Draw evidence from informational texts to support analysis,	
		reflection, and research. (HS-PS3-4), (HS-PS3-5)	
		SL.11-12.5 Make strategic use of	
		digital media (e.g., textual, graphical, audio, visual, and interactive	
		elements) in presentations to enhance understanding of findings, reasoning,	
		and evidence and to add interest. (HS-PS3-1), (HS-PS3-2), (HS-PS3-5)	

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
Students who demonstrate	PS3.A: Definitions of		Before:	Activation energy	
understanding can:	Energy		KWL – Students	Anode	http://highschoolenergy.acs.org/co
	Energy is a	How is energy	will list what they	Boiling point	<u>ntent/hsef/en.html</u> - teaching
HS-PS3-1 Create a computational	quantitative property	transferred and	know and what	elevation	resources for the energy unit of
model to calculate the change in	of a system that	conserved?	they want to know	Calorie	chemistry – includes labs and
the energy of one component in a	depends on the motion		about atoms. This	Cathode	videos, good for real-life uses as it
system when the change in energy	and interactions of		will be repeated	Cell	was produced by bp
of the other component(s) and	matter and radiation	How do you	with each concept	Change of state	
energy flows in and out of the	within that system.	determine if a	throughout the	Chemical bond	http://www.csun.edu/science/chem
system are known. [Clarification	That there is a single	reaction will release	unit. (periodic	Concentration	<u>istry/</u> - Internet resources to
Statement: Emphasis is on	quantity called energy	or require energy?	table, fusion,	Conduction	accompany the Source Book for
explaining the meaning of	is due to the fact that a	Where does that	decay, etc)	Convection	teaching Science. Has links to
mathematical expressions used in	system's total energy	energy come from		current	various topics.
the model.] [Assessment	is conserved, even as,	and/or go to?	Quick Writes –	Convection	
Boundary: Assessment is limited	within the system,		Before each lesson	heating	Electron Movement:
to basic algebraic expressions or	energy is continually		students will be	Crystalline solid	http://www.colorado.edu/physics/2
computations; to systems of two	transferred from one		asked to write	Disorder	000/quantumzone/fraunhofer.html
or three components; and to	object to another and		their thoughts and	Electrochemical	Explains the differences between
thermal energy, kinetic energy,	between its various		questions for the	Electrostatic	Absorption and Emission
and/or the energies in	possible forms. (HS-		day pertaining to	attractions	Spectrum
gravitational, magnetic, or	PS3-1), (HS-PS3-2)		the objectives.	Endothermic	http://chemistry.beloit.edu/blueligh
electric fields.]				reaction	t/pages/elements.html Graphic
	At the macroscopic		Pretest – Students	Energy	display of Emission and

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science	Disciplinary Core	Essential Questions	Assessments	Vocabulary	Resources
Standards	Ideas	Essential Questions			
HS-PS3-4 Plan and conduct an	scale, energy		will be given an	Enthalpy	Absorption spectrum of all
investigation to provide evidence	manifests itself in		assessment to	Entropy	elements (QuickTime)
that the transfer of thermal energy	multiple ways, such as		understand their	Equilibrium	http://www.chem4kids.com/files/at
when two components of different	in motion, sound,		knowledge on the	Exothermic	om intro.html Common elements
temperature are combined within	light, and thermal		unit before	reaction	that make up humans
a closed system results in a more	energy. (HS-PS3-2)		instruction is	Freezing point	1
uniform energy distribution	(HS-PS3-3)		given.	depression	Chemical Potential Energy:
among the components in the				Gibb's free	http://www.chem1.com/acad/webt
system (second law of	These relationships are			Hess's law	ext/chembond/ Virtual textbook
thermodynamics). [Clarification	better understood at		<u>During</u> :	Ionic motion	offers content and numerous
Statement: Emphasis is on	the microscopic scale,		Think/Pair/Share –	Joules	concept maps and resources
analyzing data from student	at which all of the		Students will work	Kelvin	* *
investigations and using	different		in pairs to practice	temperature	http://www.historyoftheuniverse.c
mathematical thinking to describe	manifestations of		and reinforce rules	Keq	om/chemener.html Explanation of
the energy changes both	energy can be modeled		as they are	Kinetic energy	chemical energy
quantitatively and conceptually.	as a combination of		introduced.	Kinetic molecular	http://www.biology.arizona.edu/bi
Examples of investigations could	energy associated with			model	ochemistry/tutorials/chemistry/pag
include mixing liquids at different	the motion of particles		Lab Investigations	Le chatelier	e2.html Chemical bonds and
initial temperatures or adding	and energy associated		– Students will be	Mass to energy	attractive forces (tutorial)
objects at different temperatures	with the configuration		responsible for	conversion	,
to water.] [Assessment Boundary:	(relative position of		developing and	Order	http://wps.prenhall.com/wps/media
Assessment is limited to	the particles). In some		implementing one	Oxidation	/objects/169/173125/MolecularEnt
investigations based on materials	cases the relative		or more lab	Oxidation-	ropy.html - prentice hall media
and tools provided to students.]	position energy can be		investigation(s)	reduction	sites – this one is shows entropy –
	thought of as stored in		exploring the	reactions	many others available
HS-PS3-3 Design, build, and	fields (which mediate		periodic table,	Potential energy	, , , , , , , , , , , , , , , , , , ,
refine a device that works within	interactions between		nuclear processes,	Pressure-	http://www.shodor.org/unchem/ad
given constraints to convert one	particles). This last		and properties of	temperature	vanced/thermo/index.html -
form of energy into another form	concept includes		elements.	relationship	explanation of thermodynamics –
of energy. [Clarification	radiation, a			Pressure-volume	no interaction
Statement: Emphasis is on both	phenomenon in which		Daily	relationship	
qualitative and quantitative	energy stored in fields		Assignments –	Reaction rate	Endothermic and Exothermic
evaluations of devices. Examples	moves across space.		Students will be	Reduction	Reactions:
of devices could include Rube	(HS-PS3-2)		given assignments	Release of energy	http://chemistry.about.com/cs/gene
Goldberg devices, wind turbines,			that will check for	Rotational	ralchemistry/a/aa051903a.htm -
solar cells, solar ovens, and	PS3.B: Conservation		understanding.	motion	Provides basic definition and
generators. Examples of	of Energy and			Solute	description of reaction. Good
constraints could include use of	Energy Transfer			Specific heat	r

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science	Disciplinary Core	Essential Questions	Assessments	Vocabulary	Resources
Standards	Ideas				
renewable energy forms and	Conservation of		After:	Spontaneous	resource for many inquiries related
efficiency.] [Assessment	energy means that the		Posttest: Students	Temperature-	to chemistry.
Boundary: Assessment for	total change of energy		will be given a test	volume	http://www.chem.umn.edu/outreac
quantitative evaluations is limited	in any system is		after the unit has	relationship	h/EndoExo.html - Describes both
to total output for a given input.	always equal to the		been completed	Transforming	types of reactions and contains an
Assessment is limited to devices	total energy		and the	matter and/or	example of each type of reaction.
constructed with materials	transferred into or out		Presentations have	energy	J. T.
provided to students.]	of the system. (HS-		been given.	Translational	http://www.chemguide.co.uk/atom
	PS3-1)			motion	s/structures/molecular.html - This
HS-LS1-5 Use a model to			Project: Students	Vibrational	page describes how the physical
illustrate how photosynthesis	Energy cannot be		will create a	motion	properties of substances having
transforms light energy into stored	created or destroyed,		presentation using		molecular structures varies with
chemical energy. [Clarification	but it can be		multi-media (as a		the type of intermolecular
Statement: Emphasis is on	transported from one		group) of this unit.		attractions - hydrogen bonding or
illustrating inputs and outputs of	place to another and		This will include		van der Waals forces.
matter and the transfer and	transferred between		various concepts,		vali dei waais forces.
transformation of energy in	systems. (HS-PS3-1),		experimental data,		Enthology & Entwomen
photosynthesis by plants and	(HS-PS3-4)		vocabulary, and		Enthalpy & Entropy:
other photosynthesizing			applications in the		http://www.avogadro.co.uk/definitions/hbond.htm - Basic definition
organisms. Examples of models	Mathematical		"real world" and		
could include diagrams, chemical	expressions, which		will focus on all		along with a table illustrating the
equations, and conceptual	quantify how the		aspects of energy		relationship between bond length
models.] [Assessment Boundary:	stored energy in a		transferred during		and bond enthalpy.
Assessment does not include	system depends on its		a given chemical		http://www.shodor.org/unchem/ad
specific biochemical steps.]	configuration (e.g.		reaction.		vanced/thermo/index.html - Good
	relative positions of		Assessed by		content site with links to other
HS-LS1-6 Construct and revise	charged particles,		teacher created		basic and advanced concepts.
an explanation based on evidence	compression of a		rubric.		
for how carbon, hydrogen, and	spring) and how				
oxygen from sugar molecules may	kinetic energy depends				
combine with other elements to	on mass and speed,				
form amino acids and/or other	allow the concept of				
large carbon-based molecules.	conservation of energy				
[Clarification Statement:	to be used to predict				
Emphasis is on using evidence	and describe system				
from models and simulations to	behavior. (HS-PS3-1)				
support explanations.]					
[Assessment Boundary:	The availability of				

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science	Disciplinary Core	Essential Questions	Assessments	Vocabulary	Resources
Standards	Ideas				
Assessment does not include the	energy limits what can				
details of the specific chemical	occur in any system.				
reactions or identification of	(HS-PS3-1)				
macromolecules.]					
	Uncontrolled systems				
HS-LS1-7 Use a model to	always evolve toward				
illustrate that cellular respiration	more stable states—				
is a chemical process whereby the	that is, toward more				
bonds of food molecules and	uniform energy				
oxygen molecules are broken and	distribution (e.g.,				
the bonds in new compounds are	water flows downhill,				
formed resulting in a net transfer	objects hotter than				
of energy. [Clarification	their surrounding				
Statement: Emphasis is on the	environment cool				
conceptual understanding of the	down). (HS-PS3-4)				
inputs and outputs of the process					
of cellular respiration.]	PS3.C: Relationship				
[Assessment Boundary:	Between Energy and				
Assessment should not include	Forces				
identification of the steps or	When two objects				
specific processes involved in	interacting through a				
cellular respiration.]	field change relative				
	position, the energy				
HS-ESS1-1 Develop a model	stored in the field is				
based on evidence to illustrate the	changed. (HS-PS3-5)				
life span of the sun and the role of					
nuclear fusion in the sun's core to	PS3.D: Energy in				
release energy in the form of	Chemical Processes				
radiation. [Clarification	Although energy				
Statement: Emphasis is on the	cannot be destroyed, it				
energy transfer mechanisms that	can be converted to				
allow energy from nuclear fusion	less useful forms—for				
in the sun's core to reach Earth.	example, to thermal				
Examples of evidence for the	energy in the				
model include observations of the	surrounding				
masses and lifetimes of other	environment. (HS-				
stars, as well as the ways that the	PS3-3),(HS-PS3-4)				
sun's radiation varies due to					

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
sudden solar flares ("space	ETS1.A: Defining				
	S				
weather"), the 11-year sunspot	and Delimiting				
cycle, and non-cyclic variations	Engineering				
over centuries.] [Assessment	Problems				
Boundary: Assessment does not	Criteria and				
include details of the atomic and	constraints also				
sub-atomic processes involved	include satisfying any				
with the sun's nuclear fusion.]	requirements set by				
THE	society, such as taking				
HS-LS2-5 Develop a model to	issues of risk				
illustrate the role of	mitigation into				
photosynthesis and cellular	account, and they				
respiration in the cycling of	should be quantified to				
carbon among the biosphere,	the extent possible and				
atmosphere, hydrosphere, and	stated in such a way				
geosphere. [Clarification	that one can tell if a				
Statement: Examples of models	given design meets				
could include simulations and	them. (secondary to				
mathematical models.]	HS-PS3-3)				
[Assessment Boundary:					
Assessment does not include the					
specific chemical steps of					
photosynthesis and respiration.]					
HS-PS4-5 Communicate					
technical information about how					
some technological devices use					
the principles of wave behavior					
and wave interaction with matter					
to transmit and capture					
information and energy.					
[Clarification Statement:					
Examples could include solar					
cells capturing light and					
converting it to electricity;					
medical imaging; and					
communications technology.]					
[Assessment Boundary:					

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary	Resources
Assessments are limited to qualitative information. Assessments do not include band theory.]					
HS-ETS1-1 Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.					
HS-ETS1-4 Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.					

^{*}Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.